Prediction of Euro to US Dollar Exchange Rate Using CNN Method with Grid Optimization

(1) * Faqihuddin Al Anshori Mail (Universitas PGRI Yogyakarta, Indonesia)
(2) S Pidgeon Mail (University of Technology Sydney, Australia)
*corresponding author

Abstract


This research compares the performance of Convolutional Neural Network (CNN) models without optimization and CNN with Grid Search optimization in predicting the Euro exchange rate against the United States Dollar. Data obtained from Yahoo Finance for the period 2018-2023. The results showed that the CNN model with Grid Search optimization provided better performance with an RMSE value of 0.01, MAE of 0.01, MAPE of 0.61%, and R² of 0.8586 on test data, and prediction accuracy reached 99.39%. Grid Search optimization successfully found the best parameters with batch_size 32, dense_units 50, filters 64, kernel_size 3, and learning_rate 0.001. This research proves that hyperparameter optimization can improve the performance of CNN models in predicting currency exchange rates, which can be a decision support tool for foreign exchange market players.

Keywords


CNN; exchange rate prediction; Euro; US Dollar; Grid Search optimization deep

   

DOI

https://doi.org/10.33292/ijarlit.v3i2.45
      

Article metrics

10.33292/ijarlit.v3i2.45 Abstract views : 108 | PDF views : 36

   

Cite

   

Full Text

Download

References


O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, "Financial time series forecasting with deep learning: A systematic literature review: 2005-2019," Appl. Soft Comput., vol. 90, p. 106181, 2020.

A. J. Dautel, W. K. Härdle, S. Lessmann, and H.-V. Seow, "Forex exchange rate forecasting using deep recurrent neural networks," Digit. Financ., vol. 2, pp. 69-96, 2020.

Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng, "Geoman: Multi-level attention networks for geo-sensory time series prediction," in IJCAI, 2018, vol. 2018, pp. 3428-3434.

I. E. Livieris, E. Pintelas, and P. Pintelas, "A CNN-LSTM model for gold price time-series forecasting," Neural Comput. Appl., vol. 32, pp. 17351-17360, 2020.

A. Borovykh, S. Bohte, and C. W. Oosterlee, "Conditional time series forecasting with convolutional neural networks," arXiv Prepr. arXiv1703.04691., 2017.

Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, "LSTM network: a deep learning approach for short-term traffic forecasting," IET Intell. Transp. Syst., vol. 11, no. 2, pp. 68-75, 2017.

J. M.-T. Wu, Z. Li, N. Herencsar, B. Vo, and J. C.-W. Lin, "A graph-based CNN-LSTM stock price prediction algorithm with leading indicators," Multimed. Syst., vol. 29, no. 3, pp. 1751-1770, 2023.

M. Z. Abedin, M. H. Moon, M. K. Hassan, and P. Hajek, "Deep learning-based exchange rate prediction during the COVID-19 pandemic," Ann. Oper. Res., pp. 1-52, 2021.

L. Gudmundsson, H. Xuan, M. Leonard, and S. Westra, "The Global Streamflow Indices and Metadata Archive (GSIM) - Part 2: Quality Control, Time-Series Indices and Homogeneity Assessment," Earth Syst. Sci. Data, 2018, doi: 10.5194/essd-10-787-2018.

E. K. Ampomah, G. Nyame, Z. Qin, P. C. Addo, E. O. Gyamfi, and M. Gyan, "Stock Market Prediction With Gaussian Naïve Bayes Machine Learning Algorithm," Informatica, 2021, doi: 10.31449/inf.v45i2.3407.

A. Bhandary, V. Dobariya, G. Yenduri, R. H. Jhaveri, S. Gochhait, and F. Benedetto, "Enhancing Household Energy Consumption Predictions Through Explainable AI Frameworks," Ieee Access, 2024, doi: 10.1109/access.2024.3373552.

Y. Yang, X. Gao, L. Hong, and Q. Yang, "Study on Univariate Modeling and Prediction Methods Using Monthly HIV Incidence and Mortality Cases in China," Hiv/Aids-Res. Palliat. Care, 2024, doi: 10.2147/hiv.s476371.

L. Munkhdalai, T. Munkhdalai, K. H. Park, H. G. Lee, M. Li, and K. H. Ryu, "Mixture of Activation Functions With Extended Min-Max Normalization for Forex Market Prediction," Ieee Access, 2019, doi: 10.1109/access.2019.2959789.

M. I. Hasnan, A. Jaffar, N. M. Thamrin, M. F. Misnan, A. I. Mohd Yassin, and M. S. Amin Ali, "NARX-based Water Quality Index Model of Air Busuk River Using Chemical Parameter Measurements," Indones. J. Electr. Eng. Comput. Sci., 2021, doi: 10.11591/ijeecs.v23.i3.pp1663-1673.

J. Bang, K. Baek, J. Lim, Y. Han, and H. So, "Deep Neural Network Regression-Assisted Pressure Sensor for Decoupling Thermal Variations at Different Operating Temperatures," Adv. Intell. Syst., 2023, doi: 10.1002/aisy.202300186.

D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv Prepr. arXiv1412.6980, 2014.

L. Tian, "Forecast and Analysis for Stock Markets of the U.S., Canada, and Mexico Based on Time Series Forecasting Models," Adv. Econ. Manag. Polit. Sci., vol. 13, no. 1, pp. 389-401, 2023, doi: 10.54254/2754-1169/13/20230759.

G. Bekda?, Y. Ayd?n, Ü. I??kda?, A. N. Sadeghifam, S. Kim, and Z. W. Geem, "Prediction of Cooling Load of Tropical Buildings With Machine Learning," Sustainability, vol. 15, no. 11, p. 9061, 2023, doi: 10.3390/su15119061.

G. Tzoulis, "Harnessing Convolutional Neural Networks for Accurate Stock Price Prediction: A Case Study of Hellenic Telecommunications Organization (HTO.AT)," Int. J. Artif. Intell. Informatics, vol. 2, no. 2, pp. 66-72, 2024, doi: 10.33292/ijarlit.v2i2.39.

F. Agustin and P. De Melin, "Comparison of GRU and CNN Methods for Predicting the Exchange Rate of Argentine Peso (ARS) against US Dollar (USD)," Int. J. Artif. Intell. Informatics, vol. 2, no. 1, pp. 9-16, 2024, doi: 10.33292/ijarlit.v2i1.31.


Refbacks

  • There are currently no refbacks.


View My Stats IJARLIT